On Random and Partition Testing
       Simeon Ntafos


University of Texas at Dallas

Computer Science Program

Richardson, TX 75083, USA

ntafos@utdallas.edu

Abstract
There have been many comparisons of random and partition testing.  Proportional partition testing has been suggested as the optimum way to perform partition testing.  In this paper we show that this might not be so and discuss some of the problems with previous studies.  We look at the expected cost of failures as a way to evaluate the effectiveness of testing strategies and use it to compare random testing, uniform partition testing and proportional partition testing.  Also, we introduce partition testing strategies that try to take the cost of failures into account and present some results on their effectiveness.

Keywords

Program Testing, Random Testing, Partition Testing.

1. Introduction
The main method that is used in order to reach some level of confidence on the reliability of software is program testing.  Program testing strategies (testing criteria) execute the program on a (usually very small) subset of its inputs.  Herein lies the problem and challenge of software testing.  How do we select the test cases so that we can be confident about the reliability of the program from a very small sample?

Most testing strategies use some kind of information about the program to generate the test cases.  This information may be the control or data flow of the program [1], functional properties of the program [15,16], information on commonly occurring errors and combinations thereof (e.g., mutation analysis [9]). Partition testing is a general model for many of these strategies.  In partition testing, the input domain of the program is partitioned into subdomains and test cases are selected from each subdomain.  A subdomain could consist of inputs that cause a certain branch to be executed, or inputs that are "equivalent" with respect to some property (equivalence partitioning [16]), or even inputs that are likely to encounter a certain type of error.   This allows partition testing to model a variety of knowledge-based strategies (although it is not, by any means, a perfect model).

In random testing, test cases are selected randomly from the input domain of the program.  There is a body of research that appears to suggest that knowledge-based testing strategies do not perform significantly better than an equal number of randomly selected test cases unless they test low probability subdomains that have high failure rates [10,13].  An analytical comparison of random and partition testing [21] reports conditions under which random and partition testing outperform each other. One of the observations in [21]  was that partition testing is certain to perform better than random testing if all the subdomains have equal size.  This was followed up by others [2-6] who developed more conditions that make partition testing better than random testing and led them to suggest proportional partition testing (where the number of test cases per subdomain is proportional to the probability/size of the subdomain) as the optimum way to do partition testing  [2,6]. 

In this paper we revisit the random vs. partition testing question.  In the next section we introduce the basic notation and review previous results. Then we discuss proportional partition testing.  We introduce the expected cost of failures as a measure of testing effectiveness and report on some comparisons of random, uniform partition and proportional testing.  Finally we discuss partition testing strategies that attempt to take the cost of failures into account and present some evaluations of them.

2. The Partition Testing Model
Let D be the input domain of the program and consider a partition of D into disjoint subdomains D1, D2, ..., Dk.  This already causes problems since most testing strategies do not produce disjoint subdomains. The issue of overlapping subdomains is discussed in [13,21].  One way to resolve the problem is to further subdivide overlapping subdomains so that a true partition can be obtained; however, this may result in a large number of subdomains and might not be a reasonable solution in practice.  For our purposes we will assume that we have a true partition.  The model used in previous studies associates a probability pi and a failure rate (i  with each subdomain. These are assumed to be uniform within each subdomain, i.e., all inputs are equally likely to be used and equally likely to result in a failure.   Again, these are simplifying assumptions that are not likely to be true in practice.

Random testing selects inputs at random from the input domain.  If the distribution of the selected inputs is the same as the distribution of inputs in expected use (the operational profile), then statistical estimates for the reliability of the program can be obtained from test outcomes. Partition testing may be viewed as stratified random sampling while random testing corresponds to simple random sampling from the input domain D [8].  The ideal situation for partition testing would be to produce homogeneous (or revealing) subdomains [13,22], i.e., subdomains in which all inputs either result in a failure or produce correct results.  This may be one of the reasons behind the practice of selecting one test case per subdomain for many testing strategies.  If homogeneity is achieved, it is a well known result in statistics that  stratified random sampling can lead to precise estimates using a smaller sample than simple random sampling [8]. This would imply that partition testing should perform much better than random testing with an equal number of test cases.  

Comparisons of random and partition testing go back to a study by Duran and Ntafos [10].  They used a failure rate distribution that approximated homogeneity by forcing most failure rates to be close to 1 or 0.   They compared the probabilities of detecting at least one failure for random and partition testing.   These are given by the following expressions:

    Pr  = 1 - (1 - ()n 

    Pp = 1 - (i (1 - (i) ni
where ni is the number of test cases in subdomain Di.

The study in [10] found that the performance of random testing was pretty close to that of partition testing.  A comparison of the expected number of errors detected by the two strategies also produced similar results.   These results appeared to counter  the common belief that a knowledge-based strategy should perform much better than random testing.  Hamlet and Taylor followed up with a more extensive study that further investigated the various parameters of the model and obtained similar results [13].   Weuyker and Jeng  [21] did an analytical study that resulted in conditions that make one strategy perform better than the other.  One of their observations was that if all subdomains have equal size and an equal number of test cases is selected from each subdomain, then partition testing has a better chance of finding at least one error.  This condition was generalized in [3] where it was shown that partition testing will outperform random testing as long as the allocation of the test cases to the subdomains is done in proportion to the size of the subdomains.   Other conditions have also been published but proportional allocation has received the most attention and was suggested as the best way to do partition testing [2,6].

3. Is Proportional Partition Testing Best?
Proportional partition testing has been suggested as an optimum way to perform partition testing  in [2,6].  In this section we discuss some problems with this conclusion and discuss other problems with previous comparisons of random and partition testing. 

Proportional partition testing allocates n test cases to the subdomains according to the  probability (size) of each subdomain.   Since each subdomain must be tested by at least one test case, that immediately implies that the number of test cases should be larger than the number of subdomains.  As previously observed in [6,21], a true proportional allocation may be infeasible or unrealistic because of the large number of test cases that may be needed.  For example, consider a program in which D consists of two subdomains.   Suppose that one of them corresponds to a rare special condition which occurs once in a million runs.  Then proportional partition testing would require a total of 1,000,001 test cases to test a program that could consist of a single IF statement.  Note that rare conditions are present in many (if not every) large system and should not be ignored as they are likely sources of error [14].

Aside from the feasibility question, the very reason that proportional partition testing is recommended is questionable.   The reason given in [2,6] is that if partition testing allocates the test cases proportionately, then it will be guaranteed to  perform at least as well as random testing (with respect to the probability of detecting at least one error).   Note that random testing will also tend to allocate test cases according to the probabilities of the subdomains.  The only difference is that random testing will do so “on average” while partition testing can force such an allocation. As the number of test cases increases, the two allocations will tend to become the same.   In some sense, proportional partition testing is a version of partition testing that most closely imitates random testing.   While this may assure that the probability of detecting at least one error is at least as good as that for random testing, it actually reduces the relative advantage that partition testing has over random testing by forcing the “stronger” strategy to imitate the “weaker” one.  

It is easy to see that trying to guarantee that partition testing does not do worse than random testing comes at a price and is probably counterproductive.  Suppose that we have k subdomains and start with n = k test cases.  Then, proportional partition testing is forced to allocate one test case per subdomain.  This is the case discussed in [10,13]. If the experiment is repeated many times, we have that partition testing does better than random testing in most cases  although random testing may do better in some cases.  We then increase the number of test cases.  As n increases, proportional partition testing can come closer and closer to achieving a true proportional allocation.  The number of cases in which proportional partition testing does worse than random testing should decrease and eventually become zero. At the same time, the probability of detecting at least one error increases for both random and proportional partition testing.  As a result, the number of cases in which the two strategies perform equally well should increase.  Also, the difference between the probabilities of detecting at least one error for the two strategies will decrease as n increases (each additional test case contributes less and less due to the exponential form of the expressions). 

The price that proportional partition testing pays in order to make sure that random testing does not outperform it is the decrease in the size of the relative advantage that it has over random testing.   Table 1 shows the results of sample simulations using k=50 subdomains and allowing the number of test cases to go from 50 to 2000 in increments of 50.  The experiment was repeated 1000 times using random values for the probabilities and the failure rates (but keeping the overall failure rate about the same).  Test case allocation for proportional partition testing was done by starting with an initial allocation of ni = max(1, floor(n pi )) and allocating each of the remaining test cases so as to minimize the percentage difference between the current and the true proportional allocation.   With 50 test cases we have that  proportional partition testing  was outperformed by random testing in 154 out of 1000 cases but the probability of detecting at least one error is 22.5% higher for proportional partition testing than random testing (averaged over the 1000 cases). 

	n
	rand
	=
	part
	Pr
	Pp
	% 

	50
	154
	0
	846
	59.87
	73.37
	22.5

	100
	77
	0
	923
	74.88
	81.63
	9.0

	200
	63
	0
	937
	84.30
	86.93
	3.1

	300
	54
	2
	944
	87.82
	89.23
	1.6

	400
	57
	10
	933
	89.76
	90.71
	1.1

	500
	53
	33
	914
	91.04
	91.70
	.72

	600
	45
	61
	894
	91.99
	92.53
	.59

	700
	62
	103
	835
	92.74
	93.13
	.43

	800
	43
	152
	805
	93.35
	93.67
	.34

	900
	41
	203
	756
	93.87
	94.14
	.29

	1000
	45
	262
	693
	94.32
	94.53
	.22

	1100
	48
	316
	636
	94.72
	94.89
	.19

	1200
	43
	363
	594
	95.07
	95.24
	.17

	1300
	40
	395
	565
	95.39
	95.52
	.13

	1400
	43
	431
	526
	95.68
	95.79
	.12

	1500
	39
	459
	502
	95.954.42
	96.04
	.098

	1600
	42
	485
	473
	96.19
	96.26
	.075

	1700
	40
	506
	454
	96.41
	96.48
	.073

	1800
	42
	537
	421
	96.62
	96.68
	.057

	1900
	46
	562
	392
	96.81
	96.86
	.048

	2000
	35
	581
	384
	96.99
	97.05
	.059


Table1:Random vs. Proportional Partition Testing  (k=50).

	n
	rand
	=
	part
	Pr
	Pp
	% 

	100
	59
	0
	941
	83.94
	93.03
	10.8

	200
	13
	0
	987
	93.94
	96.96
	3.2

	400
	11
	0
	989
	97.83
	98.56
	.75

	600
	3
	16
	981
	98.76
	99.10
	.34

	800
	3
	85
	912
	99.15
	99.33
	.18

	1000
	9
	203
	788
	99.37
	99.48
	.11

	1200
	2
	329
	669
	99.51
	99.60
	.09

	1400
	3
	433
	564
	99.61
	99.67
	.066

	1600
	5
	524
	471
	99.68
	99.72
	.044

	1800
	2
	589
	409
	99.73
	99.77
	.036

	2000
	3
	645
	352
	99.78
	99.81
	.031

	2200
	2
	692
	306
	99.81
	99.84
	.030

	2400
	2
	726
	272
	99.84
	99.86
	.025

	2600
	2
	765
	233
	99.86
	99.88
	.019

	2800
	3
	788
	209
	99.88
	99.90
	.017

	3000
	2
	816
	182
	99.90
	99.91
	.014

	3200
	3
	838
	159
	99.91
	99.92
	.012

	3400
	2
	857
	141
	99.92
	99.93
	.011

	3600
	2
	869
	129
	99.93
	99.94
	.0097

	3800
	2
	876
	122
	99.94
	99.95
	.011

	4000
	1
	883
	116
	99.94
	99.96
	.0094

	
	
	
	
	
	
	


Table 2: Random, Proportional Partition Testing (k=100).

With 2000 test cases, proportional partition testing is outperformed in only 35 cases but the two strategies perform equally well in 581 cases.  The probability of detecting at least one error is now only 0.06% higher for proportional partition testing.       The variation of the various values with n is mostly the expected one;  note that the number of cases in which random testing outperforms proportional partition   testing tends to decrease but the decrease is not monotonic.  It is also somewhat surprising that even with 2000 test cases random testing still outperforms proportional partition testing in a significant number of cases.   

Table 2 shows the results of a similar simulation study using k=100 subdomains and letting the number of test cases range from 100 to 4,000 in 100 increments.   The results are similar; even with 4,000 test cases, there is still one case when random outperforms proportional partition testing while the difference in performance is only 0.009%.

The conclusion we draw from the above discussion is that guaranteeing that partition testing does not get outperformed by random testing is not a worthwhile goal to pursue.   Partition testing is relatively more effective if one test case per subdomain is used and reaching the goal may well require an inordinate number of test cases.  If cost effectiveness is considered (as it is most of the time in practice), the situation becomes clearly untenable.  It simply does not make any sense to use an additional 3,900 test cases to increase the probability of detecting at least one error from 93% to 99.95%. 

The basic issue of comparing the effectiveness of random and partition testing remains unresolved despite the many studies that have been published.   A fundamental problem is that almost all the studies of random vs. partition testing disregard the cost of testing.  Cost is clearly the central factor in a realistic comparison but it is hard to measure, data are not easy to obtain and little has been done to deal with it.  The cost of testing should not only include the cost of preparing test plans, executing the test plans and buying/developing tools to support the process but it should also include the cost of failures that remain undetected and will eventually manifest themselves as field failures.  An effort to include failure cost factors was reported in [19].  This was an analytical study that showed that including failure costs tends to increase the difference in performance between partition and random testing.  It also showed that the  optimum way (with respect to minimizing the sum of the cipi(i) to allocate the test cases is in proportion to the product ci pi, where ci is the cost of experiencing a failure on an input from Di.  Note that the optimality of the proportional allocation scheme follows as a special case where all the cost factors are equal.  Other efforts to account for the cost of failures are reported in [12,17,18,20].

Besides cost, another factor that has been disregarded in comparisons of random and partition testing is the relative effectiveness of a test case under the two strategies.   The partition testing model assumes that test case selection within a subdomain is done at random.   This may be the case in practice sometimes but for most real testing strategies that are based on knowledge it is often the case that better test cases can be generated.  For example, functional testing considers the functions that the program performs and finds test inputs that are important to those functions.  Domain analysis [23] checks for domain errors using a number of test cases that is related to the dimensionality of the boundaries and can assure detection of certain error types.   Fault-based strategies will target specific types of errors and are more likely to find them than randomly selected test cases.  All this points out that the best way to do partition testing should be determined by the actual strategy that is used to create  the partition.  Selecting one test case per subdomain essentially implies a reliance on homogeneity.  Since no testing strategy has been shown to induce homogeneous subdomains (or come close to it)  selecting one case per subdomain is just the least expensive way to perform partition testing (in that it does the minimum required coverage).  While proportional allocation schemes may have some merits,  they raise more questions than they answer. The goal of assuring performance that is at least as good as that of random testing does not make much sense and its cost-effectiveness is even more questionable.   It seems that attention should be focused on actual strategies rather than the partition model.

Since its use in [10], the probability of detecting at least one failure has become a standard measure of effectiveness in  random vs. partition testing comparisons.  The expected number of failures has been shown to be highly correlated to the probability of detecting at least one failure in the partition model [4].  However, effectiveness can be measured in many ways.  A comparison in terms of the delivered reliability is reported in [11].  In the next section we look at the expected cost of field failures as a measure of testing effectiveness and use it to compare random, uniform partition and proportional partition testing. 

4. Expected Failure Cost

The cost of testing should be a central factor in  realistic comparisons of testing strategies.  The total cost consists of the cost of carrying out the testing itself (and related activities) but should also include the cost of undetected errors that will eventually show up as field failures.  It is well known that the cost of a failure increases dramatically the later it is detected.  Field failures are by far the most expensive ones.  The decision to release the software can be viewed as a tradeoff between the cost of additional testing and the cost of more field failures.  Given the numerous reports of field failures with high costs, it seems that the cost of field failures often outweighs that of testing itself.

In [19] we used a probabilistic measure of failure costs in an analytical comparison of random and partition testing.  The study showed that the cost factors can have a significant effect in such comparisons (partition testing is the beneficiary).  Here we consider an alternative measure, the expected cost of field failures.  This is based on the premise that errors that remain undetected past the software release will eventually cause a field failure.  It may be that some errors will never come up during the time the software is in use but, given  the possibility that the operational profile may change in the future and the possibility of a high cost rare condition, it seems appropriate to take a worse case view and assume that all errors will eventually result in failure.  Also, the model can easily allow the cost of certain subdomains to be disregarded by setting either the failure rate or the cost to zero.  Then the expected cost of field failures is given by the expression:

(i ci  (1 - (i ) ni 

where ci is the cost of  failure for inputs in Di,,(i is the failure rate for Di and ni is the number of test cases from Di.  We assume that these parameters are constant within each subdomain. Again, this is a simplifying assumption that may not hold in practice.

The expected cost of field failures is the probability that all the test cases for a subdomain “passed” multiplied by the cost of  failure for that subdomain.  All the undetected errors in a subdomain are treated as a single error. This measure depends on the cost and failure rate profiles of the program.  Both of these are generally unknown in practice.  Still, it is interesting to use it in comparing testing strategies since it measures what the user is likely to be most interested in.  Note that the probabilities of the subdomains do not enter the picture.  Thus, there is no reason to expect that proportional partition testing will do better than any other allocation scheme. 

Table 3 shows sample simulation results comparing random, uniform partition  and proportional partition testing  for various values of k, n.  In uniform partition testing the test cases are distributed equally to the subdomains. In this simulation random probabilities were assigned to the subdomains.  The cost factors were selected randomly from the range $100-10K (in 100 increments).  Failure rates were assigned randomly in the range 0-1 for 3% of the subdomains and in the range 0-0.0005 for the rest.   The table shows pair-wise comparisons of how many times out of 100 trials a strategy performed better, equally well or worse than the other.  The number of test cases used was at least twice the number of subdomains to make proportional partition testing (approximately) feasible.

	
	ran vs. uni
	ran vs. pro
	uni vs. pro

	k=10, n=20
	47 - 0 - 53
	44- 16 - 40
	54 - 0 - 46

	k=10, n=40
	44 - 0 - 56
	39- 21 - 40
	55 - 0 - 45

	k=10, n=80
	43 - 0 - 57
	39- 18 - 43
	59 - 0 - 41

	k=10, n=160
	42 - 0 - 58
	50- 13 - 37
	58 - 0 - 42

	k=10, n=320
	40 - 0 - 60
	49- 19 - 32
	60 - 0 - 40

	k=20, n=40
	55 - 0 - 45
	50 - 2 - 48
	50 - 0 - 50

	k=20, n=80
	54 - 0 - 46
	55 - 1 - 54
	50 - 0 - 50

	k=20, n=160
	51 - 0 - 49
	45 - 1 - 54
	50 - 0 - 50

	k=20, n=320
	49 - 0 - 51
	48 - 2 - 50
	53 - 0 - 47

	k=20, n=640
	45 - 0 - 55
	51 - 4 - 55
	55 - 0 - 45

	k=60, n=120
	37 - 0 - 63
	51 - 0 - 49
	70 - 0 - 30 

	k=60, n=240
	37 - 0 - 63
	57 - 0 - 43
	66 - 0 - 34

	k=60, n=480
	40 - 0 - 60
	48 - 0 - 52
	61 - 0 - 39

	k=60, n=960
	42 - 0 - 58
	60 - 0 - 40
	58 - 0 - 52

	k=60, n=1920
	39 - 0 - 61
	62 - 0 - 38
	60 - 0 - 40

	k=100, n=200
	30 - 0 - 70
	48 - 0 - 52
	75 - 0 - 25

	k=100, n=400
	27 - 0 - 73
	50 - 0 - 50
	76 - 0 - 24

	k=100, n=800
	28 - 0 - 72
	61 - 0 - 39
	69 - 0 - 39

	k=100,n=1600 nnn=n=1600
	34 - 0 - 66
	57 - 0 - 43
	66 - 0 - 34

	k=100,n=3200 n=3200
	31 - 0 - 69
	72 - 0 - 28
	71 - 0 - 29

	
	
	
	


Table 3: Random vs. Partition Testing.

The only real trend one can see in the results shown in table 3 is that uniform partition testing does better than the other two strategies.  We repeated the experiment with a variety of failure rate and cost distributions and uniform partition testing  does best in most cases.   We do not mean to suggest that uniform allocation should be the preferred way to perform partition testing.  It is debatable whether the expected cost of field failures or the probability of detecting at least one failure is the more appropriate measure of effectiveness.   Either way, this sensitivity of the comparisons to the measure used may be another reason to rely on the actual strategy used rather than the partition model.

5. Cost-based Partition Testing
In this section we investigate the possibility of using cost and failure rate profiles to improve testing.  If the costs and failure rates for each subdomain are known, it is a simple matter to compute an optimum allocation of any number of test cases so that the expected cost of field failures will be minimized.  The optimum allocation does not appear to have a simple form.   For the case of two subdomains with at least one test case allocated to each subdomain, the optimum value for n1 is:

         (n log (1-(2) + log(c2(2/(c1(1))+log((1-(1)/(1-(2))

n1  (  --------------------------------------------------------------

                                  log(1-(1) + log(1-(2)

This is obtained by  equating the marginal contributions of an additional test case for  each of the two subdomains.

The optimum allocation can be easily computed by calculating the marginal contribution of an additional test case for each subdomain and allocating the next test case to the subdomain that will produce the most gain.  It is interesting to note that the optimum allocation may be zero test cases for some subdomains, i.e., it is not really a partition testing strategy in that it does not allocate at least one test case per subdomain.  

The central issue in trying to use the cost of field failures during development is whether or not it is at all possible to do so without making unrealistic assumptions that render the results useless in practice.  It seems that one can not accurately calculate the expected  cost of failures in the field without knowing exactly what failures exist in the software and without having an accurate model of the environment in which the software will operate.  Even then, measuring cost can involve subjective factors (e.g., what is the cost of bad publicity?) or it may depend on the exact timing of the failure (e.g., the cost of a fault that knocks out a switch depends on the traffic at the time of failure and the speed of the repair).  The real question is how close we can get to the optimum allocation if we make educated guesses for the failure and cost profiles and how that compares to the alternative of treating all failures as having equal cost (i.e., the current state of affairs).

The first difficulty is that it is not reasonable to assume that the (i are known.  However,  developers often have a very good estimate of the overall failure rate they can expect for a project (based on experience with similar projects).  Also, the results of early inspections and unit testing could be used to estimate an expected failure rate which can be used during integration/system testing.  Then a viable strategy may be to use the expected failure rate for the program as a whole in place of the individual (i. We refer to this as the average-theta strategy (it assumes perfect knowledge of the cost factors).  Another possibility is to classify the subdomains into "reliable" and "questionable" subdomains according to their expected failure rates.   This leads to a "two-theta" strategy.

Cost profiles parallel operational profiles in many ways and it may be possible to get reasonably good predictions for the cost of a failure associated with a particular function the software is supposed to perform.  A way to estimate the cost  factors that seems realistic is to allow only two cost factors, i.e., assume that we can accurately distinguish between high and low cost subdomains.  We refer to this as the "two-cost" strategy. The two-cost strategy uses the average failure rate to allocate the test cases to the subdomains.  An alternative is to combine it with the two-theta strategy resulting in the "two-and-two" strategy.  

We compared the expected cost of field failures for these strategies with that for random (statistical) testing and two versions of partition testing, uniform partition testing and proportional partition testing.  We tried various values of k (the number of subdomains) and n (the number of test cases).  Each experiment was repeated 100 times.  Table 4 shows the number of times that the average-theta, the two-cost, the two-theta and the two-and-two strategies did better than random, uniform partition and proportional partition testing respectively for sample values of k, n. 

	k
	20
	20
	20
	100
	1000
	100

	n
	40
	160
	640
	200
	800
	3200

	
	
	
	
	
	
	

	avgth-ran
	99
	99
	99
	99
	99
	99

	avgth-uni
	99
	99
	99
	99
	99
	99

	avgth-pro
	99
	99
	99
	99
	99
	99

	2cost-ran
	87
	95
	96
	66
	76
	100

	2cost-uni
	87
	93
	98
	55
	71
	100

	2cost-pro
	86
	93
	95
	64
	77
	100

	2thet-ran
	97
	97
	81
	100
	100
	100

	2thet-uni
	96
	98
	100
	99
	100
	100

	2thet-pro
	98
	97
	81
	100
	100
	100

	2+2 - ran
	97
	94
	70
	100
	100
	97

	2+2 - uni
	97
	99
	98
	99
	100
	100

	2+2 - pro
	97
	93
	70
	100
	100
	97


Table 4: Percentage of trials that first strategy has lower expected cost than second strategy.

In this experiment it was almost impossible for a subdomain to have a zero failure rate (i.e., to be correct).  This led to exaggerated values for the expected costs even under the optimum strategy (i.e., assume full knowledge of  both the costs, ci , and the failure rates,  (i, and allocate the test cases to minimize the expected cost) and tended to reduce the differences between the various strategies.  Also, the expected costs increases with the number of subdomains.

In order to make more realistic comparisons in terms of the actual dollar amounts of the expected costs, we consulted with test managers at local companies.  This led to a model that allows failure rates to be zero since, in practice, it is often the case that many of the subdomains are known to be highly reliable.  The number of subdomains was set at k=300 with costs ranging from $1,000 to $20,000 and the failure rates for 60% of the subdomains were set to zero.  Using 300-2,100 test cases, we have the expected costs (in thousands) shown in Table 5.  The potential cost of field failures (no testing) is $313,600. Comparing with the optimum strategy, the random and partition testing strategies start with expected costs about four times the optimum (n=300) and end up with expected costs ranging from 35-40 times the optimum (n=2,100). This points out how much room for improvement there is.  Comparing the two-cost strategy with random and partition testing, with 300 test cases the two-cost strategy has an expected cost of $235,600 which is a savings of $16,000 over the uniform partition testing strategy and $20,000 over random testing.  However, with 2,100 test cases, the two-cost strategy has an expected cost of $130,000 which is only a $3,000 savings over random and proportional partition testing  and $19,000 more than the expected cost for uniform partition testing. 

	n

n
	300
	600
	1200
	1500
	1800
	2100

	
	
	
	
	
	
	

	optimum
	58.1
	24.2
	12.4
	7.2
	4.6
	3.2

	random
	255
	214
	185
	163
	146
	133

	uniform
	252
	206
	172
	146
	126
	111

	proport.
	252
	212
	183
	163
	146
	133

	avg-theta
	255
	224
	200
	182
	166
	153

	two-cost
	236
	192
	166
	149
	138
	130

	two-theta
	67.2
	36.8
	25.6
	19.7
	16.0
	13.5

	two+two
	112
	96.6
	91.3
	88.6
	86.9
	85.8


Table 5.   Expected Costs for eight strategies (in $1K).

The two-cost strategy outperforms partition testing when the number of test cases is low but is outperformed as the number of test cases increases. Also, note that the average-theta strategy performed worse than  the two-cost strategy as well as random and partition testing.  This seems surprising since it appears that having more knowledge (the exact costs) actually produces negative results.  This illustrates that the comparisons are sensitive to the distribution of the failure rates and the relation between the average failure rate and the most likely failure rates.  We expect that using the average failure rate in place of the individual (i will work very well when it is (or is near) the most likely value.  For example, if the failure rates in the various subdomains follow a normal distribution then the average-theta strategy should do very well (the two-cost strategy will benefit as well).

6. Concluding Remarks
Proportional partition testing has been suggested as a preferred way to perform partition testing because it assures performance that is at least as good as that of random testing.  We showed that this goal for partition testing is rather questionable and even counterproductive. Partition testing strategies can be expected to perform better than random testing; the real issue is cost-effectiveness. Random testing may be a good complementary strategy to use especially for final testing.  It has the advantage of relatively easy reliability estimation from test outcomes. Note that statistical testing is a complementary strategy even in the Cleanroom methodology [7] where no other “testing” is done.  Cleanroom relies heavily on inspections and other early lifecycle methods to eliminate errors.  Standard testing strategies would mostly duplicate checks that have already been performed while statistical testing may provide new checks and yields operational reliability estimates.

We discussed the expected cost of field failures as a measure of test effectiveness and as a potential way to improve testing by considering approximate cost and failure rate profiles.  Much work needs to be done to validate  estimation models and determine situations where approximate cost and failure profiles can be effectively used.  The simulation results that we presented show the potential gains that can be realized but it is not clear how realistic the strategies we discussed are.   One thing that is hopefully clear is that testing and failure costs are very important factors and that a lot more attention needs to be paid to them. 

Acknowledgment

This material is based in part upon work supported by the Texas Advanced Technology Program under Grant No.  009741-021.

References
1.   Beizer, B., Software Testing Techniques,  2nd Edition,            Van Nostrand, New York, 1990.   

2.  Chan, F., T. Chen, I. Mak and Y. Yu, “Proportional sampling strategy: Guidelines for software test practitioners”, Information and Software Technology, Vol. 38, No. 12, pp. 775-782, 1996.

3.
Chen, T. and Y. Yu, "On the Relationship Between Partition and Random Testing,", IEEE Transactions on Software Engineering, Vol. 20, No. 12, pp. 977-980, Dec. 1994.

4. Chen, T. and Y. Yu, “On the Expected Number of Failures Detected by Subdomain Testing and Random Testing”, IEEE Trans. on Software Engineering, Vol. 22, No. 2, pp. 109-119, 1996. 

5. Chen, T. and Y. Yu, “A More General Sufficient Condition for Partition Testing to be better than random testing”, Information Processing Letters, Vol. 57, No. 3, pp. 145-149, 1996.

6.  Chen, T. and Y. Yu, “Constraints for Safe Partition Testing Strategies”, Computer Journal, Vol. 39, No. 7, pp. 619-625, 1996.

7.
Cobb, R. and H. Mills, "Engineering Software under Statistical Quality Control," IEEE Software, pp. 44-54, Nov. 1990.

8.   Cochran, W.  "Sampling Techniques," Wiley, 1977. 

9.   DeMillo, R., R. Lipton and F. Sayward, “Hints on Test Data Selection: Help for the Practicing Programmer”, IEEE Computer, Vol. 11, No. 4, pp. 34-41, 1978.

10. Duran, J. and S. Ntafos, "An Evaluation of Random Testing," IEEE Trans. on Software Engineering, Vol. SE-10, No. 4, July 1984, pp. 438-444.

11. Frankl, P., D. Hamlet, B. Littlewood and L. Strigini, “Choosing a Testing Method to Deliver Reliability,” Proc. 19th  Int’l Conference on Software Engineering,  pp. 68-78, May 1997. 

12. Gutjahr, W. "Optimal Test Distributions for Software Failure Cost Estimation," IEEE Trans. on Software Engineering, Vol. 21, No. 3, pp. 219-228, March 1995.

13. Hamlet, R. and R. Taylor "Partition Testing does not Inspire Confidence", IEEE Trans. on Software Engineering, Vol. 16, No. 12, Dec. 1990,  p. 1402-1411. 

14. Hecht, H., Rare Conditions - An Important Cause of Failures," Proc. of COMPASS-93, pp. 81-85, 1993.

15. Howden, W., "A Functional Approach to Program Testing and Analysis", IEEE Trans. on Software Engineering, Vol. 12, pp. 997-1005, 1986.

16. Myers, G.J., The Art of Software Testing, John Wiley and Sons, New York, 1979.

17. Sherer, S., "Measuring Software Failure Risk: Methodology and an Example," Journal of Systems and Software, Vol. 25, pp. 257-269, 1994.

18. Sherer, S.  "A Cost-Effective Approach to Testing," IEEE Software, pp. 34-40, 1991.

19. Tsoukalas, M., J. Duran and S. Ntafos, "On Some Reliability Estimation Problems in Random and Partition Testing", IEEE Trans. on Software Engineering, Vol. 19, No. 7, pp. 687-697, July 1993.

20. E. Weyuker, "Using Failure Cost Information for Testing and Reliability Assessment", ACM Trans. on Software Engineering and Methodology, Vol. 5, No. 2, pp. 87-98, April 1996.

21. Weyuker, E., and B. Jeng, "Analyzing Partition Testing Strategies," IEEE Trans. on Software Engineering, Vol. 17, No. 7, pp. 703-711, July 1991.

22. Weyuker, E. and T. Ostrand, "Theories of Program Testing and the Application of  Revealing Subdomains," IEEE-TSE, Vol. 6, pp. 236-246, 1980.

23. White, L. and E. Cohen, “A domain strategy for computer program testing”, IEEE Trans. on Software Engineering, Vol. 6, pp. 247-257, 1980.


